Interpretation of reflectance spectra of clay mineral-silica mixtures: implications for Martian clay mineralogy at Mawrth Vallis - Nancy K. McKeown, Janice L. Bishop, Javier Cuadros, Stephen Hillier, Elena Amador, Heather D. Makarewicz, Mario Parente, and Eli A. Silver

SOM1: MGM results for montmorillonite SWy-2, intimate mixture end member
SOM2: MGM results for 100% kaolinite KGa-1, intimate mixture end member
SOM3: MGM results for intimate mixture spectrum containing 25% kaolinite–75% montmorillonite
SOM4: MGM results for intimate mixture spectrum containing 50% kaolinite-50% montmorillonite
SOM5: MGM results for intimate mixture spectrum containing 60% kaolinite-40% montmorillonite
SOM6: MGM results for intimate mixture spectrum containing 75% kaolinite-25% montmorillonite
SOM7: MGM results for montmorillonite SWy-2, linear mixture end member
SOM8: MGM results for 100% kaolinite KGa-1, linear mixture end member
SOM9: MGM results for linear mixture spectrum containing 15% kaolinite-85% montmorillonite. For this and following linear mixtures, band 3 does not plot with a Gaussian shape. This is due to the paucity of data points and narrowness of the band in this region.
SOM10: MGM results for linear mixture spectrum containing 25% kaolinite-75% montmorillonite
SOM11: MGM results for linear mixture spectrum containing 30% kaolinite-70% montmorillonite
SOM12: MGM results for linear mixture spectrum containing 40% kaolinite-60% montmorillonite
SOM13: MGM results for linear mixture spectrum containing 50% kaolinite-50% montmorillonite
SOM14: MGM results for linear mixture spectrum containing 60% kaolinite-40% montmorillonite
SOM15: MGM results for linear mixture spectrum containing 75% kaolinite-25% montmorillonite
SOM16: From MGM, the area of band 1 (kaolinite 2.17 μm) divided by the area of band 2 plotted against the amount of kaolinite in the sample, scaled to unity for pure kaolinite. The ratio of these areas increases linearly with the amount of kaolinite in the sample.
SOM17: From MGM, the area of band 1 (kaolinite 2.17 \(\mu m \)) divided by the sum of the areas of bands 2, 3, and 4 (kaolinite and montmorillonite 2.20 \(\mu m \) and 2.21 \(\mu m \), and montmorillonite 2.24 \(\mu m \), respectively) plotted against the amount of kaolinite in the sample, scaled to unity. The ratio of these areas increases linearly with the amount of kaolinite in the sample.