FIRST OCCURRENCE OF A STACKING SEQUENCE INCLUDING
(±60°, 180°) ROTATIONS IN Mg-RICH ANNITE

TOSHIHIRO KOGURE AND MASSIMO NESPOLO

Mineralogical Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan

Abstract—Transmission electron microscopy (TEM) observation shows narrow regions in a Ti-containing Mg-rich annite of composition (K0.90Na0.02)(Mg0.72Fe2+x.78Mn0.03Ti0.27Al0.05)(Si2.77Al1.23)O10(OH,F)2 from a granite rock, where the ±60° and 180° stacking angles occur extensively. These regions are a few hundreds of nanometers thick along the [001]* direction and are within 1M or 2M1 annite. The stacking sequence in one of these regions was determined by two atomic-resolution images recorded along [110] and [010] of the same crystal. Stacking sequences with ±120° or 180° rotations are dominant, although those with ±60° rotations occur also. Locally 2O and more complex sequences exist. Compositional analysis by TEM indicated no difference in the chemical compositions between these regions and the adjacent ones with regular 1M or 2M1 stacking sequence. The origin of these unusual stacking sequences in annite is discussed.

Key Words—Annite, Biotite, HRTEM, Mica, Polytype-2O, Polytypism, Stacking Disorder.

INTRODUCTION

Since the pioneer study of Mauguin (1928), polytypism of micas was extensively investigated, both experimentally and theoretically (see references in Bailey, 1980; Nespolo et al., 1997, 1998). Polytypism in micas occurs owing to six directions of stagger, with a length of a/3 in (001) projection, between two tetrahedral sheets in a 2:1 layer. Stacking of these 2:1 layers occurs with respect to the stagger direction (Smith and Yoder, 1956). Polytypes where the position of one layer relative to the other layers is the same or equivalent for all layers are called homogeneous polytypes (Zvyagin, 1988). Homogeneous polytypes are also known as “simple” (Smith and Yoder, 1956) or “standard” (Bailey, 1980) and are subdivided into three families of MDO (maximum degree of order) polytypes (Backhaus and Đurović, 1984). Remaining polytypes are called inhomogeneous polytypes (Zvyagin, 1988). Inhomogeneous polytypes are also known as “complex” (Smith and Yoder, 1956). Inhomogeneous polytypes are rare and their occurrence seems to relate to several factors, among which crystal chemistry and crystal-growth conditions are important (Baronnet, 1980).

Classification of mica polytypes may be based on: subfamily A [polytypes where (0°, ±120°) rotations occur], subfamily B [polytypes where the rotation is (±60°, 180°)], and mixed-rotation [polytypes where both types of rotations occur] (Backhaus and Đurović, 1984; Nespolo, 1999). These three subfamilies can be distinguished from reflections with $h \neq 0$ (mod 3) and $k = 0$ (mod 3) (orthohexagonal indexing). These are $\{0h0\}$ family reflections (i.e., reflections common to all polytypes based on the same structural principle; Đurović and Weiss, 1986) for both subfamilies A and B, but these reflections are “non-family” reflections (characteristic of each polytype) for mixed-rotation polytypes. Along these reciprocal lattice rows, subfamily A, subfamily B, and mixed-rotation polytypes show one, two, and N reflections respectively in the 1 nm$^{-1}$ repeat, where N is the number of layers of the polytype (Nespolo, 1999). Disorder in stacking sequence appears as streaks along reciprocal lattice rows parallel to [001]*. For disorder involving $(2n + 1)60°$ rotations, the streaks are visible along reciprocal lattice rows with $h \neq 0$ (mod 3) and $k = 0$ (mod 3) (Đurović et al., 1984; Weiss and Wiewióra, 1986; Bailey, 1988).

Previous work showed that subfamily-A polytypes are more abundant than others, both in natural and synthetic samples. Within subfamily A, the three homogeneous polytypes, identified by Ramsdell (1947) notation as $1M_r$, $2M_r$, and $3T$, and several inhomogeneous polytypes with more complex stacking sequences have been found (Ross et al., 1966; Nespolo and Takeda, 1999). The latter include $1M_r$-$n(120)$ disordered structures (Ross et al., 1966). Only homogeneous polytypes have been reported in subfamily B. $2M_1$ is relatively common in lithium micas and has been found also in some dioctahedral micas containing high-Al (Drits et al., 1966; Zhukhlistov et al., 1973) or Cs (Ni and Hughes, 1996). 2O was found in the brittle mica anandite (Giuseppetti and Tadini, 1972; Filut et al., 1985), but 6H is still unknown. The 180° rotation is the least common in micas, where it is known only in anandite-2O (Giuseppetti and Tadini, 1972; Filut et al., 1985) and in floroplyliothionite-4A$_5$ (Takeda, 1967). The occurrence of $(2n + 1)60°$
rotations in disordered structures of mica-related phyllosilicates was investigated in detail by Drits et al. (1984) and Drits and McCarty (1996).

Two reasons may explain why subfamily B and mixed-rotation polytypes occur more rarely than subfamily-A polytypes. 1) A (-60°, 180°) rotation of successive layers produces an unfavorable arrangement of oxygen atoms at the interlayer (Radoslovich, 1959). Because of the rotation of the tetrahedra around [001]* to form a ditrigonal topology (Belov, 1949; Takéuchi and Sadanaga, 1959), basal-oxygen atoms coordinate to the interlayer cation in a trigonal prismatic configuration. This arrangement does not occur in subfamily-A polytypes, where the coordination polyhedron of the interlayer cation is a trigonal antiprism. The occurrence of the 2M₂ polytype in lithium micas is attributed to the small ditrigonal rotation (Takeda and Burnham, 1969). In addition, fluorine substitutes for OH in association with Li sites (Rieder et al., 1970). Coupled substitutions Al-Al-□-OH to Al-Li-Li-F (where □ represents a vacancy) cause deformation in the octahedral sheet to make the 2M₂ polytype more favored over 2M₁ (Takeda et al., 1971). 2) Twinning normal to (001) (Belov, 1949), spiral growth (Baronnet, 1973), or lateral coalescence (Sunagawa et al., 1975) are processes which allow two crystals or two portions of a crystal on a plane normal to (001) to come into contact. A coherent interface can form when the two crystals are rotated with respect to each other by (0°, ±120°) and this produces continuity of the octahedral sheet. In contrast, two crystals that are related by a (180°, ±60°) rotation normal to (001) would require a distorted coordination at the interface between the two crystals at the octahedral-sheet junction (Belov, 1949; Baronnet and Amouric, 1986).

X-ray diffraction (XRD) is the common technique to investigate mica polytypes and related phyllosilicates. XRD applications for the study of stacking faults in disordered structures are given in Drits and Tchourbar (1990) and Reynolds (1993). Oblique-texture electron diffraction is also extensively and successfully employed (Zvyagin, 1967; Zvyagin et al., 1979). Iijima and Buseck (1978) showed that stacking sequences in mica polytypes can be determined by observing the stagger direction in each 2:1 layer by using high-resolution transmission electron microscopy (HRTEM). However, as noted by Iijima and Buseck (1978), the application of this technique to investigate mica polytypes (e.g., Tomura et al., 1978; Amouric and Baronnet, 1983; Baronnet and Kang, 1989) was normally not sufficient to determine stacking sequences where (±60°, 180°) rotations occur, because observation was generally done only along [100], [110], or [110]. The image from these directions can distinguish the stagger direction of each layer with an angle of (0°, 180°), (60°, 120°), or (−60°, −120°), but not between the directions within each pair. A second HRTEM image is needed with the specimen rotated by 60° (along corresponding directions of [100], [110], or [110]) or 30° (along [310], [010], or [310]). The rotation of the specimen by 60° in a TEM with a high-resolution pole-piece is difficult. On the other hand, analyses of stacking sequences based on images observed along [310], [010], or [310] have not been performed because they require higher resolution images than those observed down [100], [110], or [110]. However, the determination of the stacking sequences in mica and chlorite was successful recently by using images from these directions (Banfield and Murakami, 1998; Kogure and Banfield, 1998; Kogure and Nespolo, 1999).

During TEM observation for a study involving alteration of biotite with a Mg-rich annite composition, we found images showing mixed-rotation stacking sequence never reported previously for biotite. The presence of both even and odd rotations is unambiguously confirmed by using the reflections with h ≠ 0 (mod 3) and k = 0 (mod 3) in electron-diffraction patterns.

MATERIAL AND METHODS

The specimen investigated consists of biotite crystals from granite (tonalite) from Gogoshima, Ehime prefecture, Japan (Ochi, 1982). The crystals range in size from 0.5 to 2 mm. The average chemical composition of several biotite crystals, determined by electron microprobe analyses, is (K₀.₉₀Na₀.₀₂)(Mg₀.₇₂Fe²⁺₁.₇₈-Mn₀.₀₃Ti₀.₃₂Al₀.₀₃)(Si₂.₇₇Al₁.₂₃)Oₓ(OH,F)₂ , assuming all iron is ferrous. According to the IMA Committee on Mica Nomenclature (Rieder et al., 1998) the present specimen belongs to the biotite series and should be called “Ti-containing Mg-rich anite”. The preparation method of the specimen for TEM observations was described by Ferrow and Roots (1989) and Kogure and Murakami (1996).

TEM analysis was performed at 200 kV using a JEOL JEM-2010 microscope (Cs = 0.5 mm and the corresponding point resolution of 0.20 nm) and using a double-tilt specimen holder, which can tilt the specimen by ±20° about two orthogonal axes. Although this tilt angle is insufficient, a crystal fortuitously oriented can be observed down two zone axes 30° apart as described above. Atomic-resolution images were obtained from thin areas and near Scherzer defocus. Chemical compositions were determined locally by an energy-dispersive X-ray (EDX) detector mounted on the TEM with a take-off angle of 17.5° and a Kevex Sigma spectrum analyzer. The recorded images on films were digitized using a charge-coupled device (CCD) camera. Some digitized images were processed using Gatan Digital Micrograph version 2.5 software. Noise was removed by masking the reciprocal spaces, except for reciprocal-lattice rows along [001]* in the Fourier transform of the images. Image simulations
were performed using MacTempas software (Kilaas, 1991).

RESULTS

Selected area diffraction (SAD) patterns from several annite grains indicated that they commonly adopt $1M$ and $2M_1$ sequences. More complex diffraction patterns were observed, indicating inhomogeneous polytypes. Occasionally band-like contrast parallel to (001) occurs in both $1M$ and $2M_1$ crystals if observed close to, but slightly away from the [010], [310], or [3i0] direction (Figure 1). Figure 2a is a lattice image of a similar region to that in Figure 1. The beam direction is slightly away from the [010] direction. Several fringes have more contrast than others, but the periodicity does not vary (~1.0 nm). Note the lack of streaking of 001 reciprocal rows in the SAD patterns (Figure 2b and 2c) which show 1.0-nm spacing. The distinctive contrast in Figures 1 and 2a did not occur if the crystals were observed exactly along the zone axes (i.e., [100] or [010]). Iijima and Buseck (1978) reported that stacking disorder in micas is clearly observed if the crystal is slightly away from the zone axes. Thus, the contrast in Figures 1 and 2a is probably related to stacking irregularity in the crystals. Figure 2b and 2c shows SAD patterns along [110] and [010], respectively, from the area in Figure 2a, using a selected-area aperture size corresponding to ~100 nm. The pattern along [110] is similar to a $2M_1$ polytype (Figure 2b) except for weak streaks along 11l and 22l reciprocal-lattice rows. These streaks suggest slight disorder; 33l family reflections are not streaked. The pattern along the [010] direction in Figure 2c shows that the 20l row is strongly streaked. This streaking indicates that reflections with $h \neq 0$ (mod 3) and $k = 0$ (mod 3) are non-family reflections. Therefore, the sequence corresponds to a mixed-rotation polytype, i.e., it contains both $(0^\circ, \pm 120^\circ)$ and $(\pm 60^\circ, 180^\circ)$ rotations.

Figure 3 shows processed atomic-resolution images from Figure 2a (note the square bracket in Figure 2a) recorded along [110] (Figure 3a) and [010] (Figure 3b). The corresponding layers in the two images were identified by counting layers from the chlorite-unit layer at the bottom of the image in Figure 2a, as indicated by the arrow. The corresponding simulated atomic-resolution images are shown in Figure 4. Although minor differences in contrast exist between Figure 3 and Figure 4, this is probably produced by slight crystal misorientation and weak astigmatism. Nevertheless, correspondence between the crystal structure and the contrast of the image in Figure 3 can be made. Black spots corresponding to a pair of (Si, Al)O$_4$ tetrahedra (along [110]) and a single tetrahedron (along [010]) can be identified in Figure 3. The stagger of each tetrahedral sheet with an angle of 0°, 60°, 120°, 180°, -120°, and -60° relative to the b axis observed along the [110] direction indicates lateral shifts of 0, $+b/6$, $+b/6$, 0, $-b/6$, and $-b/6$, respectively. On the other hand, these staggers indicate lateral shifts of $+a/6$, $+a/3$ ($= -a/6$), $+a/6$, $-a/6$, $-a/3$ ($= +a/6$), and $-a6$ if they are observed along [010]. By these two shifts within the same layer (white arrows in Figure 3), the stagger direction of the tetrahedral sheets in each 2:1 layer and, consequently, the stacking sequence can be completely determined. Figure 5 shows the stagger directions of nearly all layers from the bottom to the top in Figure 2a, determined by the analysis of several atomic-resolution images. The bold arrows correspond to the 2:1 layers showing the strong contrast in the lattice image in Figure 2a. On both sides of these layers, stacking sequences with $\pm 60^\circ$ or 180° rotations are present. Figure 5 also shows that the $2M_1$ sequence ($\pm 120^\circ$ rotations) is dominant, although a few faults occur within the sequence corresponding to the $1M$ stacking mode (0° rotations). The present stacking sequence is reminiscent of that found by Ohta et al. (1979) in clinotite (the original name “valuevite” is now considered a variety name of clintonite, according to the IMA report on mica nomenclature: Rieder et al., 1998). In contrast to clintonite, however, the 180° rotations occur extensively, and the overall sequence is a random mixture of $2M_1$ and $2O$. Locally, a $2O$ sequence with six unit layers and a $4A_1$ sequence, corresponding to RTW (Ross-Takeda-Wones) rotational symbols 2233 (Ross et al., 1966; Takeda and Ross 1995), with three unit layers, are formed.

The chemical composition was analyzed with a beam diameter of ~10 nm to examine the compositional change between the area shown in Figure 2a and adjacent areas with the $2M_1$ structure. The results in-
Figure 2. (a) (001) lattice image showing band-like contrast as in Figure 1. The arrow indicates the interlayer transformed to a brucite-like sheet by chloritization. The square bracket is the corresponding area to images in Figure 3. SAD patterns including layers in (a) along [110] and [010] are shown in (b) and (c), respectively. Note the strong streak along the 20\(\parallel\) row in (c).

DISCUSSION

As far as we know, this is the second report of a 1\(M_1\)-\(m(60^\circ)\) in phyllosilicates and the first for biotite, or the phlogopite-annite series. In contrast with the rotationally disordered illite-smectite reported by McCarty and Reynolds (1995), the annite crystal consists of an ordered 2\(M_1\) polytype, within which a small disordered region occurs. The analysis and the interpretation differ in the two cases. Clearly, the volume showing such a sequence is so small that it cannot be detected by conventional diffraction techniques other than small-area electron diffraction. Thus, this reported occurrence may be unique or such (\(\pm 60^\circ, 180^\circ\)) rotations may have been overlooked by previous workers who have not considered TEM images of micas along [310], [010], or [310], i.e., the orientation for detecting (\(\pm 60^\circ, 180^\circ\)) rotations.

From the stacking vectors in Figure 5, the dominant stacking sequence appears to be the 2\(M_1\) polytype (\(\pm 120^\circ\) alternate rotations) for this sample. This sequence is probably perturbed by some event, such as
Figure 3 Filtered atomic-resolution images of the annite layers in Figure 2a, recorded along [110] and [010] in (a) and (b), respectively. These 13 layers in the images correspond to layers No. 58–70 in Figure 5. The white arrows indicate the shift of the tetrahedral sheets in each 2:1 layer. In Figure 3a, the arrows connect dark spots which correspond to potassium ions at the interlayers, the lateral shift of which is the same as that of the stagger of two tetrahedral sheets in a 2:1 layer.

To interpret the stacking sequence in Figure 5, the absolute orientation of layers must be considered, as described by Z symbols (Zvyagin et al., 1979; Zhukhlistov et al., 1990). These symbols give the absolute orientations and relative displacements of half-layers with respect to a space-fixed reference (\(a, b\)). Within the so-called homo-octahedral approximation (origin of the octahedral sheet at the \(M1\) site; see Nespolo et al., 1999) the two half-layers within the same layer have the same orientation and one Z symbol is sufficient to describe the orientation of the whole layer (Zhukhlistov et al., 1990). This orientation is illustrated by the six structure-related \(a\) axes (i = 1–6). The (001) projection of stacking vectors is indicated by the Z symbol \(i (i = 1, 2, \ldots, 6)\) when the \(a\) axis is parallel to the \(a\) space-fixed axis (Figure 5). The parity of Z symbols (odd or even) is commonly called orientation parity (Zvyagin, 1997).

In Figure 5, the stacking sequence begins with a 2\(M\) pattern, which consists of layers of the same orientation parity, namely \(Z = 2\) and \(Z = 4\). The pattern of the sequence alteration in the first 51 layers is straightforward: one layer with abnormal orientation (\(Z = 5\)) replaces one layer of the 2\(M\) sequence in an irregular way. For layers No. 19, 23, 25, and 31, a
layer with orientation \(Z = 5\) occurs instead of a layer with orientation \(Z = 2\), as expected for the \(2M_1\) sequence. Similarly, for layers No. 34, 40, and 44, a layer with orientation \(Z = 5\) occurs instead of a layer with orientation \(Z = 4\). In the former case (\(Z = 5\) instead of \(Z = 2\)), 60° rotations are generated relative to adjacent “normal” layers with \(Z = 4\), and in the latter case (\(Z = 5\) instead of \(Z = 4\)), 180° rotations are generated. The layer with \(Z = 5\) may have originated by the protrusion of a foreign crystallite, which then altered the spiral growth of the \(2M_1\) crystal.

From layer No. 52, layers with \(Z = 1\) and longer \(2O\)-like sequences with more than three layers occur. Note that these sequences occur only after the occurrence of a \(1M\)-like sequence (layers No. 48–49, indicated by the white arrow near No. 44). In a \(2M_1\) sequence, layer No. 49 should be \(Z = 2\), but this layer has orientation \(Z = 4\), rotated counterclockwise by 120° relative to \(Z = 2\). Layer No. 52 has orientation \(Z = 1\) (120° counterclockwise rotation from \(Z = 5\), the original orientation of the “abnormal” layer). Thus a structural adjustment at layer No. 49 has probably influenced the orientation both of the matrix and of the abnormal layer. The five-layer (No. 51–55; 57–61; 92–96; 99–103) and 13-layer (No. 75–87) \(2O\)-like sequences cannot be interpreted as the three-layer se-
quences described above. A series of structural adjustments appears to be active from layer No. 49 to the end of the disorder sequence (the 13-layer 20-like sequence occurs again after a 1M-like sequence; No. 70–71, indicated by the white arrow near No. 70), to produce thereafter the 2M₁ polytype.

The modifying event may have been the lateral coalescence of crystallites. The chemistry of the sample, however, may have been important also for the true 20-like sequences. The composition of the sample is not unusual, but it contains a significant amount of Fe and Ti, two elements which are commonly associated with inhomogeneous polytypes. High Fe content in octahedral sites is preferable to +60 ~ 180 ~ rotational sequences because it increases the lateral dimension of the octahedral sheet and decreases ditrigonal rotation, thereby allowing lateral congruence between the two sheets (Takeda and Mori, 1970; Hazen and Wones, 1972; McCarty and Reynolds, 1995). This is especially true at high temperature (Takeda and Morosin, 1975; Russell and Guggenheim, 1999). Therefore, the interlayer coordination polyhedron does not differ greatly between subfamilies A and B.

The effect of Ti on the structure of the 2:1 layer is not known. A high Ti/(Ti + Fe_{oct}) ratio favors ±120° stacking sequences. The addition of Ti during the synthesis of micas influences growth kinetics and modifies the growth habit (Sun and Baronnet, 1989). The presence of the high-charge Ti in the octahedral sheet must affect the position and species of neighboring cations, especially those in the tetrahedral sites. These adjustments are local and differ from the observed average structure obtained by X-ray analyses. The effect of Ti on the local structure of mica requires further investigation. However, the association of Ti with inhomogeneous polytypes and rare sequences with stacking errors can hardly be considered casual.

ACKNOWLEDGMENTS

We thank S. Žurovič (Slovak Academy of Sciences, Bratislava) and G. Ferraris (University of Torino) for critical reading of a previous version of the manuscript, and for their contributions, and J.F. Banfield (University of Wisconsin-Madison), H. Takeda (Chiba Institute of Technology), Y. Takeuchi (Nihon University, Tokyo), B.B. Zvyagin (IGEM, RAS, Moscow), and S. Merlino (University of Pisa) for many important and profitable discussions. We thank S. Guggenheim (University of Illinois at Chicago), V.A. Drits (RAS, Moscow), D.K. McCarty (Texaco EPTD), and G. Guthrie (Los Alamos National Laboratory) for reviewing the manuscript. We also thank T. Murakami (University of Tokyo) for providing the samples, and D. Yu. Pushcharovsky (Moscow State University) for sending consultation material. One of us (MN) is greatly indebted to M. Miyamoto (University of Tokyo), for his encouragement during this work.

The electron microscopy was performed in the Electron Microbeam Analysis Facility of the Mineralogical Institute, University of Tokyo. This research was partly developed during a Doctoral Program (MN), supported by the Japanese Ministry of Education, Science and Culture.

REFERENCES

Filut, M.A., Rule, A.C., and Bailey, S.W. (1985) Crystal structure refinement of anadrite-2Or, a barium- and sulfur-

E-mail of corresponding author: kogure@min.s.u-tokyo.ac.jp

(Received 7 April 1998; accepted 22 May 1999; Ms. 98-047)