Rietveld Refinement of the Kaolinite Structure at 1.5 K

David L. Bish
Earth and Environmental Sciences Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545

Abstract: The crystal structure of Keokuk kaolinite, including all H atoms, was refined in space group C1 using low-temperature (1.5 K) neutron powder diffraction data (λ = 1.9102 Å) and Rietveld refinement/difference-Fourier methods to Rwp = 1.78%, reduced χ2 = 3.32. Unit-cell parameters are: a = 5.1535(3) Å, b = 8.9419(5) Å, c = 7.3906(4) Å, α = 91.926(2)°, β = 105.046(2)°, γ = 89.797(2)°, and V = 328.70(5) Å3. Unit-cell parameters show that most of the thermal contraction occurred along the [001] direction, apparently due to a decrease in the interlayer distance. The non-H structure is very similar to published C1 structures, considering the low temperature of data collection, but the H atom positions are distinct. The inner OH group is essentially in the plane of the layers, and the inner-surface OH groups make angles of 60°–73° with the (001) plane. Difference-Fourier maps show minor anisotropy of the inner-OH group in the [001] direction, but the inner-surface OH groups appear to have their largest vibrational (or positional disorder) component parallel to the layers. Although no data indicate a split position of any of the H sites in kaolinite, there is support for limited random positional disorder of the H atoms. However, these data provided no support for a space group symmetry lower than C1.

Key Words: Crystal structure • H positions • Kaolinite • Low temperature • Neutron powder diffraction • Rietveld refinement

Clays and Clay Minerals; December 1993 v. 41; no. 6; p. 738-744; DOI: 10.1346/CCMN.1993.0410613
© 1993, The Clay Minerals Society
Clay Minerals Society (www.clays.org)