Properties and Characterization of Al2O3 and SiO2-TiO2 Pillared Saponite

P. B. Malla1 and S. Komarneni*, 2
1 Research and Development, Thiele Kaolin Company, P.O. Box 1056, Sandersville, Georgia 31082
2 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
* Also with the Department of Agronomy.

Abstract: A saponite pillared with a single (Al2O3) or a mixed (SiO2-TiO2) oxide exhibited basal spacings of 16–19 and 30–40Å, respectively. The pillared structures were found to be stable up to 700°C. Water, nitrogen, and high resolution argon adsorption were used to study the effect of thermal treatments on surface chemistry, pore structure, and surface area of these pillared clays. The pillared saponites exhibited a hydrophobic behavior at temperatures > 500°C, whereas such behavior was observed at ≥300°C for montmorillonite. Most of the micropores in the Al2O3 pillared clays were < 10 Å, whereas the SiO2-TiO2 pillared clays showed a broad distribution of pores in both micropore and mesopore regions. The SiO2-TiO2 pillared samples possessed higher surface area compared with Al2O3 pillared clays. The percent decrease in surface area was smaller for pillared saponites compared with pillared montmorillonites when calcined from 300° to 700°C, indicating a higher thermal stability of the former. The pillared clays were also characterized by solid state 27Al and 29Si magic-angle spinning nuclear magnetic resonance (MAS/NMR) spectroscopy. There was no direct evidence of cross-linking (covalent bonding between the clay layer and pillar) in montmorillonite irrespective of the types of pillars. In saponite, however, a significant structural modification took place. 27Al spectra of Al2O3 pillared saponite heated at ≥300°C appear to indicate an increase in AlVI as a result, at least in part, of initiation of hydrolytic splitting of Si-O-Al bonds. The actual release of Al from the tetrahedral sheet probably occurred at a temperature > 500°C and completed around 700°C with the formation of Si-O-Si linkages. The decreased intensity of peak due to Si(1Al) in 29Si spectra of the sample heated at 700°C corroborates the 27Al MAS/NMR results. Additionally, the 29Si spectra indicated a cross-linking between SiO4 (clay sheet) with Al2O3 pillars, which could be achieved by inverting some silica tetrahedra into the interlayer. 27Al and 29Si spectra of SiO2TiO2 pillared saponite also showed the trend similar to that exhibited by Al2O3 pillared saponite, indicating that the crystal chemistry of the host may be more important than the nature of pillars in the structural modification and cross-linking behavior of thermally treated pillared clays.

Key Words: Adsorption • Clays • Cross-linking • MASNMR • Montmorillonite • Pillared clay • Saponite • Smectite

Clays and Clay Minerals; August 1993 v. 41; no. 4; p. 472-483; DOI: 10.1346/CCMN.1993.0410408
© 1993, The Clay Minerals Society
Clay Minerals Society (www.clays.org)