Synthetic Allophane and Layer-Silicate Formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O Systems at 23°C and 89°C in a Calcareous Environment

V. C. Farmer, G. S. R. Krishnamurti and P. M. Huang
1 The Macaulay Land Use Research Institute, Aberdeen AB9 2QJ, United Kingdom
2 Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W0, Canada

Abstract: Solutions containing AlCl3 and Si(OH)4 (concentrations ≤ 1.5 mM with molar Si:Al ratios of 1:2, 1:1 and 3:1) and FeCl2 (0, 0.5 and 1.0 mM) were adjusted to pH 8 with Ca(OH)2, and incubated at 23°C and 89°C without exclusion of air in the presence of CaCO3 for 8–12 weeks. The products were characterized by infrared spectroscopy and X-ray diffraction. Systems with 3:1 and 1:1 Si:Al ratios without Fe gave hydrous feldspathoids at 23° and 89°C. Systems with 3:1 Si:Al ratios containing Fe gave aluminous nontronites at 89°C and noncrystalline, nontronite-like products at 23°C. Systems with 1:1 Si:Al ratios with added Fe gave Fe(III)-substituted hydrous feldspathoids at 23°C. At 89°C, the system with 1:1 Si:Al ratios and 0.5 mM Fe produced a “protohalloysite,” while that with 1.0 mM Fe gave a poorly ordered nontronite-like layer silicate. In systems with 1:2 Si:Al ratios, the formation of “protoimogolite” at 23°C was little affected by additions of Fe. At 89°C, the “protoimogolite” decomposed to boehmite and poorly-ordered layer silicate phases. Inclusion of 1 mM MgCl2 in the above systems had no effect on the products at 23°C, but at 89°C produced saponites and a mixed layer saponite-chlorite in the 3:1 Si:Al systems, and saponite-like layer structures in the 1:1 and 1:2 Si:Al systems.

Key Words: Allophane • Hisingerite • Hydrous feldspathoid • Nontronite • Poorly-ordered layer silicates • “Protoimogolite” • Saponite • Synthesis

Clays and Clay Minerals; December 1991 v. 39; no. 6; p. 561-570; DOI: 10.1346/CCMN.1991.0390601
© 1991, The Clay Minerals Society
Clay Minerals Society (