INDEX

Abrasion pH and weight per cent kaolin in saprolite, relation between 458
Acceptor regions, changes in type of oxygen packing in 9
Acid character of thoroughly dehydrated surfaces 349-354
of hydrated or partially hydrated surfaces 340-349
Activated clay, methods of preparation of 263
Activation energies for electrical conductance in clays 304
for recrystallization, spectrum of 49
Activity measurements, water, on the suspensions of clays 484-486
Additives effects of impurities 74-76
effects on rate of filtration 212
Adsorbed water, physically, and residual water 334-340
Adsorption of water, physical, on kaolinite surface 339
Adsorptive properties in the gas phase, structure of organic montmorillonites 257
Aerosil thermal stability of surface hydroxyls on 330
Xerogel, cracking catalyst, surface area on clays developed by pores for 329
Alabama clay deposits of the Tuscaloosa group in 495
Northwest, evaluation of clays 506
Alabama Piedmont, clay mineralogy and weathering of a Red-Yellow Podzolic soil from quartz mica schist in 509
Alkaline treatment of quick clays 105
Allophane and alumina-silica gel, air-dried, differential thermal curves for 167
chemical analysis of 165
X-ray diffraction traces of, Maui, Hawaii 166
solubility of, in boiling sodium hydroxide solution as a function of time 636-645
in weathered soils 163-167
argillic, and uranium emplacement on the Colorado Plateau 111
clay-mineral, in the upper Mississippi Valley zinc-lead district 445
along veins in the Central City district 114, 115
synthesis and genesis of clay minerals 466
wall rock, in vein-type deposits 113-117
Alteration studies in Thompson-Temperley mine 449-453
Alteration zones, bleaching around 122, 123
ALTSCHULER, Z. S. (with E. J. DWORNIK and HENRY KRAMER): Genesis of kaolinite from montmorillonite by weathering: structural and morphological evidence of transformation 197
Alumina and Al³⁺, dissolution, fixation, precipitation, sorption of 145
Alumina gels, ageing of 473-475
Alumina (high) minerals, origin of 129
Alumina by organic processes, concentration of 145, 146
Alumina-silica gel and allophane, air-dried, differential thermal curves for 167
chemical analysis of 165
X-ray diffraction traces of, Maui, Hawaii 166
in weathered soils 163-167
Alumina, solubility of, in boiling sodium hydroxide solution as a function of time 636-645
Aluminic and ferric samples, pure, physical evolution of 480-483
Alumino-silicates surface properties of 327
thermal stability of surface hydroxyls on 330
Aluminum\(^{3+}\) and alumina, dissolution, fixation, precipitation, sorption of 145
Aluminum amounts of, extracted from the attapulgite clay in the extraction procedure 388-390 causes of octahedral co-ordination of 333
Aluminum-containing clay minerals 10
Aluminum coordination changes with respect to the dehydroxylation extent, \(\alpha H_2O\), in kaolinite 350
Aluminum-iron systems, mixed 475-479
Aluminum-magnesium systems, mixed 479-480
Aluminum oxide, solubility of, in water 135
Aluminum sulfate, effect on rate of filtration 213
Aluminum trihydrates 472-475
Amesite and kaolinite, relation between the degree of weathering and amount 460
Amines adsorption by montmorillonites 345
Ammonia adsorption isotherms 348
Ammonia deformation band in montmorillonite, water deformation band compared to 344
Ammonia in mm Hg for montmorillonite, spacings vs. pressure of 341
Amorphous materials and underclay, origin of 168-172
Analyses, modal, of biotite-plagioclase gneiss 455
Analysis, qualitative, of the high temperature phases developed in some illitic clays 233
Anatase in underclays 162, 163
Anhydrous liquid ammonia, use in synthesis of polymer-clay compounds 605
Anion species, effect of on membrane response 406-407
Anions and cations, selective effect of, upon rate of filtration and on pH 214-218
Argillic alteration associated with geologic structures 117-121
associated with major ore-bearing strata 121, 122
and uranium emplacement on the Colorado Plateau, by Paul F. Kerr and Marian B. Jacobs 111
Argillization, alteration type in Colorado mines 113-115
Attapulgite fuller’s earth localities in Georgia and Florida, field trip 1 structure of 391
Attapulgite clay calcined at different temperatures, oxidizing power of the surface of 384-387
chemical composition of 382
in the extraction procedure, amounts of iron, aluminum, magnesium, and calcium extracted from the 388-390
Attapulagus clay, oxidizing power of the surface of 381
Basal spacings in montmorillonite 627-630
Basalts, weathered 157
Bates, T. F.: Geology and mineralogy of the sedimentary kaolins of the South-eastern United States.—A review 177
Bauxite formation of 133, 183
kaolinization in association with 137
mechanisms of formation 135
Bauxitic clays, Margerum District, Colbert County 504, 505
Belgium and Netherlands, recent researches on clay minerals in 465
Bentonite effect of concentration on zeta-potential in dilute NaCl solution 271-276
use in synthesis of polymer-clay compounds 605
Bentonite-water systems self-diffusion coefficients in 309
specific conductance in 307-308
Bentonites cation exchange capacities and sodium saturation of 314
homologous alkyl ammonium, spatial relations for 613
lime-treated, electrokinetic properties of 267
petрогенesis of 173
water tension variation with temperature in suspensions of 318-325
Beta-cristobalite, effects of impurities additives on the formation of, from kaolinite 75
INDEX

Beta-quartz, high temperature phase from illite 236, 238-241
Bi-ionic clays 306-309
Biotite-plagioclase gneiss, chemical weathering of, Dekalb County, Georgia 455
Biotite, vermiculite-like morphology by treatment of 427, 428
Bleaching around alteration zones 122, 123
Bohor, Bruce: A qualitative analysis of the high temperature phases developed in some illitic clays 233
Bonding differences in types of 252, 253
ionic-covalent, stabilities of 3-layer phyllosilicates related to 249
Bonding effects, ionic-covalent 253, 254
Bonding forces in adsorbed water 334
Bradley, W. F. (with G. W. Kunze): Occurrence of a tabular halloysite in a Texas soil 523
Breccia pipes, hydrothermal activity associated with 121
Bridge morphology and strength 554
Brindley, G. W. (with Ryozo Hayami): Kinetics and mechanisms of dehydration and recrystallization of serpentine 35
Brindley, G. W. (with Ryozo Hayami): Kinetics and mechanisms of dehydration and recrystallization of serpentine-II, Spectrum of activation energies for recrystallization 49
Brock, M. R. (with A. V. Heyl and J. W. Hosterman): Clay-mineral alteration in the upper Mississippi Valley zinc-lead district 445
Brucite 9, 10
Brule Formation, composition of weathered profile 682
Bryant, J. P. (with J. B. Dixon): Clay mineralogy and weathering of a Red-Yellow Podzolic soil from quartz mica schist in the Alabama Piedmont 509
Bubbles effect on flocculation 225-227
Bue, B. F.: Evidence of volcanic origin of the Cretaceous sedimentary kaolin of South Carolina and Georgia 195
Bue, B. F. (with L. Ray Gremillion and F. T. Ritchie): Field trip to attapulgite fuller’s earth localities in Georgia and Florida, October 4, 1963 1
Bulk specific gravity of weathered rocks 457-458
Calcium, amounts of, extracted from the attapulgite clay in the extraction procedure 388-290
Calcium-bentonite-lime system 278-279
Calcium chloride and sodium chloride, effects of, on zeta potential 271-276
Calcium hydroxide, effect of, on X-ray d-spacing 276
effects of, on zeta potential 271-276
Calcium hydroxide attack, transformations of clay minerals by 359
Calcium/potassium ratios in hectorite 578, 579
Calcium silicate hydrates 10
Cane Creek–Lisbon Valley alignment index map for 118
X-ray diffraction patterns of clay minerals from fault zones along 119
Carbonatization, alteration type in Colorado mines 113-115
around uranium deposits 123, 124
Caribou Mine, Boulder County, Colo. 113, 114
Cation exchange between mixtures of clay minerals and between a zeolite and a clay mineral by P. J. Dennv and Rustum Roy 567
between a zeolite and a clay mineral 567
Cation exchange capacities and sodium saturation of bentonites 314
Cation exchange capacity, hydroxyl contents, and specific surface area 329
Cation exchange charge, inorganic, pH dependent, of soils 281
Cation-exchange constants for clays from electrochemical measurements, by Bruce B. Hanshaw 397
Cation hydration numbers on kaolinite surface 338
Cation, interlayer 619
Cation migrations 9
Cation reorganization 37
Cation species and concentration of test solution on membrane response, effect of 407-412
Cations and anions, selective effect of, upon rate of filtration and on pH 214-218
Cations exchangeable, influence of size and charge 426, 427
repressive, in illite phases 237
Cell spacings in muscovite and spinel 16
Cementation in quick clays 95
Central City district, Gilpin County, Colorado 114, 115
Ceramic problems in production using clay 209, 210
Chadron Formation, composition of weathered profile 662
Chalk Bluff, Marion County, kaolin deposit 503
The characteristic of filter pressed kaolinite-water pastes, by Richard West 209
Charge density on clay minerals 618, 619
Chemical analyses
 of Cheyenne River basin stream waters 667
 of Katy fine sand loam 524
Chemical analysis
 of allophane and alumina-silica gel 165
 of clays from Mississippi Coastal Plain 543-546
 of fractionated sample, Ocheskey deposit 144
 of underclays and shallow saprolite 156
Chemical characteristics 188
Chemical composition of attapulgite clay 382
Chemical properties of soils 512
Chemical weathering of biotite-plagioclase gneiss, Dekalb County, Georgia, by William H. Grant 455
Chesebough Mine 5, 6
Cheto (Ariz.) montmorillonite high temperature phases—from Kulbicki (1958) 239
Cheyenne River Basin
 Eastern Wyoming, weathering and transport of sediment in the 649
 geology and soils 652, 653
 major sources of sediment 653-658
 mineral composition of suspended sediment 664
 mineralogical analysis of 660-665
 stream waters, chemical analyses of 667
Chlorite
 dehydroxylation of 30-33
 gibbsite, kaolinite, and expansible layer silicates in selected soils, weathering relationships between, from the Lower Mississippi Coastal Plain 529
 from the Ocheskey pit, diffraction pattern of 143
 X-ray identification of 585
Cisco clay mineralogy 439, 442
“Cisco clay” term defined 432
Cisco (U. Penn.) clays and shales, clay mineral-environmental relationships in 431
Clarke, Otis M. Jr.: Clay deposits of the Tuscaloosa group in Alabama 495
Clay, activated, methods of preparation of 263
Clay concentration, effect of, on zeta potential 271-276
Clay deposits
 transportation and deposition of 189-191
 variability within 184
Clay
 Katy soil, differential thermal analysis of 526
 Katy soil, infrared adsorption spectrum of 526
Clay mineral
 and zeolite, cation exchange between 567
 changes 589-592
 facies 588, 589
 variations, lateral, in certain Pennsylvanian underclays 581
Clay mineral alteration in the upper Mississippi Valley zinc-lead district, by A. V. Heyl, J. W. Hofermann and M. R. Brock 445
Clay mineral-environmental relationships in Cisco (U. Penn.) clays and shales, North Central Texas, by Edward F. Shover 431
Clay mineralogy of Paleozoic K-bentonites of the eastern United States (Part I), by Richard W. Lounsbury and Wilton N. Melhorn 557
Clay mineralogy and weathering of a Red- Yellow Podzolic soil from quartz mica schist in the Alabama Piedmont, by J. P. Bryant and J. B. Dixon 509
Clay minerals
 alteration, synthesis and genesis of 466
 charge density on 618 619
INDEX

Clay minerals, cont.
containing aluminum 10
crystallographic aspects of high temperature transformations of 9
dielectrophoretic behavior of 549
differential flocculation of 590
of the K-bentonites 560-563
and related materials, surface chemistry of 466
solid state 465, 466
transformation of, by Ca(OH)₂ attack 359
X-ray identification of 585-587
Clay particle number and surface area 316
Clay particles, zeta potential 269, 270
Clay studies, techniques for 200
Clay suspensions
stability of 102
at the upper plastic limit, thermodynamic properties of water in 319
Clay systems, effect of gelation on the properties of water in 311
Clays
activation energies for electrical conductance in 304
bi-ionic 306-309
chemical analysis of, from Mississippi Coastal Plain 543-546
compacted, selectivity of 412-417
differential thermal analysis of, from Mississippi Coastal Plain 535-542
in dispersed state, selectivity of 418, 419
from electrochemical measurements, selectivity of 399-402
evaluation of, northwest Alabama 506
homoionic 301-305
illitic, a qualitative analysis of the high temperature phases developed in 233
loss of oxide ions from exposed regions 9
natural, stresses distribution in 93
origin of electrical charge on 332
quick, studies on properties and formation of 87
surface topography of 327-331
in Tuscaloosa sands 504
water activity measurements on the suspension of 484-486
X-ray diffraction analysis of, from Mississippi Coastal Plain 592-535
Coal, Colchester, underclay of 593-595
Herrin, underclay of 595, 596
Middle Kittanning, underclay of 596-599
Coal forming processes on underclay, effect of 591
Coefficients, self-diffusion, in bentonite-water systems 309
Colchester coal, underclay of 593-595
Colorado
Caribou Mine, Boulder County 113, 114
Central City district, Colorado 114, 115
Colorado Plateau
argillic alteration and uranium emplacement on the 111
host rock alteration on 111
Compaction in quick clays 95
Concentration of alumina by organic processes 145, 146
Conductances, specific, temperature dependence of 303
Conductivity-versus temperature of kaolinite plugs 352
Configuration of the polymer chain 612-615
Coordination, pH and ionic content of octahedral layer formation 486, 487
Copper deposits associated with granodiorites, clay alteration in 109
Corundum and kalsilite, formation of 11
Covalent bonds in compounds 253
Cracking catalysts
thermal stability of surface hydroxyls on 330
Xerogel, Aerosil, surface area on clays developed by pores for 329
Cretaceous sedimentary kaolin of South Carolina and Georgia, evidence of volcanic origin of 195
Cristobalite
electron defraction pattern of 28c
solubility of, in boiling sodium hydroxide solution as a function of time 636-645
Crystallinity, rheological properties of kaolins of varying degrees of 207
Crystallization, kaolinite, compared with diffraction intensity 72-74
Crystallographic aspects of high temperature transformations of clay minerals, by H. F. W. Taylor 9
Cutler I. B. (with J. B. Holt and M. E. Wadsworth): Kinetics of the thermal dehydration of hydrous silicates 55
Cyclotherm, Pennsylvanian 584
Index

Decorah Formation, stratigraphic column 447
Dehydrated surfaces, acid character of 349-354
Dehydration data for serpentine powders 38, 39
Dehydration kinetics and mechanisms of, and recrystallization of serpentine 35, 49
in layer silicates 24-27
and recrystallization of kaolinite 45
and recrystallization of serpentine, rate of 44
Dehydroxylation electrical resistance measurements of kaolinite and serpentine powders during 29
in layer silicates 24-27
DEKKING, H. G. G.: Preparation and properties of some polymer-clay compounds 603
Deltaic-to-marine lithotypes in Cisco clay mineralogy 437, 438
DENNY, P. J. (with RUSTUM ROY): Cation exchange between mixtures of clay minerals and between a zeolite and a clay mineral 567
Density, dry bulk, and per cent volume shrinkage on drying versus rate of filtration at 25 psi 220
Deposition of clay deposits 189-191
Deposits clay, of the Tuscaloosa group in Alabama 495
copper, clay alteration in, associated with granodiorites 109
of underclay 160-163
vein-type, wall rock alteration in 113-117
Derivation of high alumina minerals from clay minerals by weathering 139-145
from non-clay silicate minerals by weathering 133-135
Deuter oxyl contents, relative 331
DIAMOND, SIDNEY (with JOE L. WHITE and WILLIAM L. DOLCH): Transformations of clay minerals by Ca(OH)$_2$
attack 359
Diaspore, formation of 141-143
Dickite and flocculated kaolinite and air bubbles, spatial relations between 223
Dielectrophoretic behavior of clay minerals

I. Dielectrophoretic separation of clay mixtures, by R. B. MCEUEN 549
Dielectrophoretic behavior of clays studied 551, 553
Dielectrophoretic separation of clay mixtures 549
Differential flocculation of clay minerals 590
Differential thermal analysis of clays from Mississippi Coastal Plain 535-542
High-temperature, and X-ray diffraction studies of reactions of Katy soil clay 526
use in study of reactions 363-374
curves of Cheto-type and Wyoming-type montmorillonites 77
Differential thermal curves for air-dried alumina silica gel and allophane 167
for kaolinite 71
Diffraction pattern of chlorite from the Ocheskey pit 143
Diffusion coefficients, determination of 297-299
Diffusion mechanism with respect to temperature 331
Direct bauxitization, mechanisms of 135-139
Disaggregated kaolins, study of orientation in kaolin deposits 202
Dispersing agents, effects on quick clays 104
Dissolution of Al$^{3+}$ and alumina 145
secondary and primary (?) effects on clays by, in a low-pH range 138, 139
NaOH, of some oxide impurities from kaolins 633
DIXON, J. B. (with J. P. BRYANT): Clay mineralogy and weathering of a Red-Yellow Podzolic soil from quartz mica schist in the Alabama Piedmont 509
DOLCH, WILLIAM L. (with SIDNEY DIAMOND and JOE L. WHITE): Transformations of clay minerals by Ca(OH)$_2$
attack 359
DWRONIK, E. J. (with Z. S. ALTSCHELER and HENRY KRAMER): Genesis of kaolinite from montmorillonite by weathering: structural and morphological evidence of transformation 197
EAST, PEGGY J. (with R. G. GAST): Potentiometric, electrical conductance and self-diffusion measurements in clay-water systems 297

Effect of gelation on the properties of water in clay systems, by RALPH A. LEO NARD and PHILIP F. LOW 311

Electrical charge on clays, origin 332

Electrical conductance measurements 299, 300

potentiometric, and self-diffusion measurements in clay-water systems 297

Electrochemical measurements

cation-exchange constants for clays from 397

selectivity of clays from 399

Electrokinetic properties of lime-treated bentonites, by CLARA HO and R. L. HANDY 267

Electrolyte solution, mixed, potential developed for 417, 418

Electron diffraction diagram of particles from Katy soil 528

Electron micrographs

of filter cake 222

of synthetic clay minerals, after 495

Electron microscopy, use in study of reactions 363-374

Electron and X-ray diffraction studies, thermal transformations of pyrophillite and talc as revealed by 21

Electronegativity and ionic potential 244-246

Endellite in underclays 162, 163

Energies, activation, for recrystallization, spectrum of 49

Enstatite formation 37

Enstatite-talc, topotactic relationships in 22-24

Entropy loss of water molecules adsorbed at 28°C on glass surfaces 340

Environmental-clay mineral relationships in Cisco (U. Penn.) clays and shales, North Central Texas 431

Equilibrium in calcium-potassium-bentonite 573-575

Evidence of volcanic origin of the Cretaceous sedimentary kaolin of South Carolina and Georgia, by B. F. BUIE 195

Evolution, physical, of pure ferric and aluminic samples 480-483

Exchange charge, inorganic pH dependent, cation, of soils 281

Exchange constants for illite compacted at 5000 psi 412

for montmorillonite compacted at 5000 psi 413

Exchange mechanisms, ionic 466, 467

Expansible layer silicates and gibbsite, kaolinite, chlorite, weathering relationships between, in selected soils from the Lower Mississippi Coastal Plain 529

Expansion of fractional montmorillonites under various relative humidities, by MARIO L. MESSINA 617

Fabric of a filter cake 218-220

Facies, clay mineral 588, 589

Ferric and aluminic samples, pure, physical evolution of 480-483

Field trip to attapulgite fuller’s earth localities in Georgia and Florida, October 4, 1963, by B. F. BUIE, L. RAY GRE MILLION and F. T. RITCHIE 1

Filter cake, fabric of 218-220

Filter pressed kaolinite-water pastes, characteristics of 209

Filter pressing behaviour of clay 211-213

Filtration, rate of, selective effect of cations and anions upon 214-218

Fixation of Al³⁺ and alumina 145

Flocculated kaolinite and dickite and air bubbles, spatial relations between 223

Flocculation

bubbles effect on 225-227 differential, of clay minerals 590

Florida and Georgia, field trip to attapulgite fuller’s earth localities in 1

Flow properties of aqueous systems of kaolins 207

Forsterite

crystallization 37

from dehydrated serpentine 33-47

from serpentine anhydride, formation of 39-42

temperature of formation from serpentine 50

Fort Bend County, Texas, tabular kaolin group mineral from 523

Fort Union Formation, composition of weathered profile 660

Fractionated montmorillonites, expansion of, under various relative humidities 617
Fractions, fine silt, of soils, and mineralogical properties of clay 512-518
Free-energy calculations in the system gibbsite-silica-water 138
FRIPIAT, J. J.: Recent researches on clay minerals in Belgium and the Netherlands 465
FRIPIAT, J. J.: Surface properties of alumino-silicates 327
Fullers earth from Georgia 182
localities, attapulgite, in Georgia and Florida, field trip 1

Gas phase, structure of organic montmorillonites and their adsorptive properties in 257
GAST, R. G. (with PEGGY J. EAST): Potentiometric, electrical conductance and self-diffusion measurements in clay-water systems 297
GASTUCHE, M. C.: The octahedral layer 471
Gelation, effect of, on the properties of water in clay systems 311
Genesis of kaolinite from montmorillonite by weathering: structural and morphological evidence of transformation, by Z. S. ALTSCHULER, E. J. DWORNIK and HENRY KRAMER 197
Genesis, synthesis and alteration of clay minerals 466
Geographic and geologic setting for kaolin deposits 180
Geology and mineralogy of the sedimentary kaolins of the Southeastern United States:—A review, by T. F. BATES 177
Georgia Dekalb County, chemical weathering of biotite-plagioclase gneiss 455
Dry Branch, kaolin deposits, petrology of 199
and Florida, field trip to attapulgite fuller's earth localities in 1
fullers earth from 182
Gulf Trough of 3
kaolin in filter pressed kaolinite water pastes 210
and South Carolina, evidence of volcanic origin of the Cretaceous sedimentary kaolin of 195
Gibbsite kaolinite, chlorite and expansible layer silicates in selected soils, weathering relationships between, from the lower Mississippi Coastal Plain 529
mechanisms of formation 135
solubility of, in boiling sodium hydroxide solution as a function of time 636-645
in underclays 162, 163
Gibbsitization of andesite 134
Glass surfaces, entropy loss of water molecules adsorbed at 28°C on 340
GLENN, ROLLIN C.: Weathering relationships between gibbsite, kaolinite, chlorite and expansible layer silicates in selected soils from the Lower Mississippi Coastal Plain 529
Glycerol retention, surface areas computed from 315
Gneiss, biotite-plagioclase, chemical weathering of, Dekalb County, Georgia 455
Goethite in underclays 162, 163
Göta River Valley, landslides in 89, 104
Granodiorites, associated with clay alteration in copper deposits 109
GRANT, WILLARD H.: Chemical weathering of biotite-plagioclase gneiss, Dekalb County, Georgia 455
GREMILLION, L. RAY (with B. F. BUie and F. T. Ritchie): Field trip to attapulgite fuller's earth localities in Georgia and Florida, October 4, 1963 1
GRIM, R. E. (with F. M. WAHL): High-temperature D.T.A. and X-ray diffraction studies of reactions 69
Grinding effects on muscovite 61, 62
Ground-water action and present-day weathering 590
Growth, rate controlling 56-58
Gulf Trough of Georgia 3

HADLEY, R. F. (with B. N. ROLFE): Weathering and transport of sediment in the Cheyenne River Basin, Eastern Wyoming 649
Halloysite effects of impurities on 76
high temperature studies 74
tabular, occurrence of, in a Texas soil 523
treatment for X-ray thermal studies 70
Halloysitic underclay and amorphous inorganic matter in Hawaii, by S. H. PATTERSON 153
INDEX

HANSHAW, BRUCE B.: Cation-exchange constants for clays from electrochemical measurements 397

Hawaii, halloysitic underclay and amorphous inorganic matter in 153

HAYAMI, RYOZO (with G. W. BRINDLEY): Kinetics and mechanisms of dehydration and recrystallization of serpentine 35

HAYAMI, RYOZO (with G. W. BRINDLEY): Kinetics and mechanisms of dehydration and recrystallization of serpentine—II, Spectrum of activation energies for recrystallization 49

Heat of adsorption in montmorillonites 348

Hectorite, calcium/potassium ratios in 578, 579

Herrin coal, underclay of 595, 596

HEYL, A. V. (with J. W. HOSTERMAN and M. R. BROCK): Clay-mineral alteration in the upper Mississippi Valley zinc-lead district 445

High-alumina arillgation, process of 131

High-alumina clays defined 129-131

High-alumina derivation of, from clay minerals by weathering 139-145

parent materials of 131

High-temperature D.T.A. and X-ray diffraction studies of reactions, by F. M. WAHL and R. E. GRIM 69

High-temperature reactions of kaolinite, thermodynamics of 247

HO CLARA (with R. L. HANDY): Electrokinetic properties of lime-treated bentonites 267

HOLT, J. B. (with I. B. CUTLER and M. E. WADSWORTH): Kinetics of the thermal dehydration of hydrous silicates 55

Homoionic clays 301-305

Host rock alteration on Colorado Plateau 111

in stratiform deposits 117

HOSTERMAN, J. W. (with A. V. HEYL and M. R. BROCK): Clay-mineral alteration in the upper Mississippi Valley zinc-lead district 445

Humidities, relative, expansion of fractionated montmorillonites under 617

Humidity control for X-ray diffraction studies 622, 623

Hungarian bauxites, mineralogy of 140, 141

Hydrated or partially hydrated surfaces, acid character of 340-349

Hydrates, calcium silicate 10

Hydration numbers, cation, on kaolinite surface 338

Hydrothermal activity associated with breccia pipes 121

Hydrothermal alteration in Marysvale, Utah uranium deposits 116

in Mt. Con Mine 109

Hydrothermal conditions, mild, topotactic transformation of muscovite under 11

Hydrous silicates, kinetics of the thermal dehydration of 55

Hydroxides iron 475

octahedral, obtained by syntheses, description of 472-480

Hydroxyl contents, cation exchange capacity, and specific surface area 329

Hydroxyl, surface density 328

Hydroxyls, surface, water molecules relative to, with respect to outgassing temperature 335-340

Identification of minerals 635

Illinois, Pennsylvanian coal underclays 581-600

Ilite compacted at 5000 psi, exchange constants for 412

compacted at 5000 psi, specificity of 415

effects of impurities on 79

phases, repressive cations in 237

reactions with calcium hydroxide 361-378

treatment for X-ray thermal studies 70

in underclays 162, 163

X-ray identification of 585

Illitic clays, a qualitative analysis of the high temperature phases developed in 233

Ilmenite in underclays 162, 163

Impurities, industrial, effects on quick clay 104

Impurity additives, effects of 74-76

Infrared adsorption spectrum of Katy soil clay 526

Infrared spectra in the 3# region for montmorillonite 342, 343
Inorganic amorphous matter and halloysitic underclay in Hawaii 153

Inorganic pH dependent cation exchange charge of soils, by V. V. Volk and M. L. Jackson 281

Interlayer cation, liquid 619
Ion exchange, condition of 570
Ion-exchange reaction, polystyrene-montmorillonite by 610
Ionic bonds in compounds 253
Ionic content, pH, and coordination of octahedral layer formation 486, 487
Ionic-covalent bonding effects 253, 254
stabilities of 3-layer phyllosilicates related to 249

Ionic exchange mechanisms 466, 467

Iron, amounts of, extracted from the attapulgite clay in the extraction procedure 388-390
Iron hydroxides 475
Iron sulfate, effect on rate of filtration 213

Jackson, M. L. (with K. V. Venkata Ramam): Vermiculite surface morphology 423

Jackson, M. L. (with V. V. Volk): Inorganic pH dependent cation exchange charge of soils 281

Jacobs, Marian B. (with Paul F. Kerr): Argillic alteration and uranium emplacement on the Colorado Plateau 111

Jenne, E. A. (with R. B. Langston): NaOH dissolution of some oxide impurities from kaolins 633

Jonas, Edward C.: Petrology of the Dry Branch, Georgia, kaolin deposits 199

Kalsilite and corundum, formation of 11
Kaolin, Cretaceous sedimentary, of South Carolina and Georgia, evidence of volcanic origin of 195
Kaolin deposit, Chalk Bluff, Marion County 503
Kaolin deposits, 183
geographic and geologic setting for 180
petrology of the Dry Branch, Georgia 199
thin section petrology of 201
X-ray diffraction studies of 202

Kaolin, use in synthesis of polymer-clay compounds 605

Kaolinite
aluminum coordination changes with respect to the dehydroxylation extent, 2H2O in 350
and amesite, relation between the degree of weathering and amount 460
dehydration and recrystallization of 45
dehydroxylation of 30-33
dehydroxylation activation energy 63
differential thermal curves for 71
flocculated, and dickite and air bubbles, spatial relations between 223
genesis of, from montmorillonite by weathering; structural and morphological evidence of transformation 197
gibbsite, chlorite and expansible layer silicates in selected soils, weathering relationships between, from the Lower Mississippi Coastal Plain 529
reactions with calcium hydroxide 361-378
and serpentine powders during dehydroxylation, electrical resistance measurements of 29
thermal stability of surface hydroxyls on 330
thermodynamics of the various high temperature reactions of 247
treatment for X-ray thermal studies 70
X-ray identification of 585

Kaolinite–water pastes, filter pressed, characteristics of 209
Kaolinite crystallization compared with diffraction intensity 72-74
Kaolinite plugs, conductivity versus temperature of 352

Kaolinite surface cation hydration numbers on 338
physical adsorption of water on 339
Kaolinitization in association with bauxite 137

Kaolins
disaggregated, study of orientation in kaolin deposits 202
flow properties of aqueous systems of 207
rheological properties of, of varying degrees of crystallinity 207
sedimentary, of the Southeastern United States, geology and mineralogy of 177
Kaolins, cont.
NaOH dissolution of some oxide impurities from 633
solute of, in boiling sodium hydroxide solution as a function of time 636-645
Kato, T. (with M. Nahara): Thermal transformations of pyrophyllite and talc as revealed by X-ray and electron diffraction studies 21
Katy fine sandy loam, chemical analyses of 524
Katy soil clay
differential thermal analysis of 526
infrared adsorption spectrum of 526
Kauai, Hawaii
X-ray diffraction of underclays 161
minerals present in underclay 155
volcanic rocks of 156-158
Keller, W. D.: The origin of high-alumina minerals—A review 129
Keller, W. D. (with J. W. Tlapex): Stabilities of 3-layer phyllosilicates related to their ionic-covalent bond in 249
Kerr, Paul F. (with Marian B. Jacobs): Argillic alteration and uranium emplacement on the Colorado Plateau 111
Kinetics and mechanisms of dehydration and recrystallization of serpentine, by G. W. Brindley and Ryozo Hayami 35
Kinetics and mechanisms of dehydration and recrystallization of serpentine-II, Spectrum of activation energies for recrystallization, by G. W. Brindley and Ryozo Hayami 49
Kinetics of the thermal dehydration of hydrous silicates, by J. B. Holt, I. B. Cutler and M. E. Wadsworth 55
Kramer, Henry (with Z. S. Altshuler and E. J. Dvornik): Genesis of kaolinite from montmorillonite by weathering: structural and morphological evidence of transformation 197
Landslides
in Göta River Valley 89, 104
and quick clays 87
Langston, R. B. (with E. A. Jenne): NaOH dissolution of some oxide impurities from kaolins 633
Lateral clay mineral variations in certain Pennsylvanian underclays, by Walter E. Parham 581
Lateral clay mineral variation in underclays 591, 592
Layer, octahedral 471
Layer silicates
dehydration in 24-27
dehydroxylation in 24-27
Leaching theory of quick clays 102-106
Leonard, Ralph A. (with Philip F. Low): Effect of gelation on the properties of water in clay systems 311
Lime-treated bentonites, electrokinetic properties of 267
Loam, Katy fine sandy, chemical analyses of 524
Lone Eagle Mine, Boulder Batholith, Montana alteration in, 116, 117
Los Ochos Mine, Saguache County, Colorado, uranium deposits in 115
Low, Philip F. (with Ralph A. Leonard): Effect of gelation on the properties of water in clay systems 311
Macrocristalline muscovite 58
Magnesium, amounts of, extracted from the attapulgite clay in the extraction procedure 388-390
Magnetite in underclays 162, 163
Marcus, J. H. (with W. C. Ormsby): Rheological properties of kaolins of varying degrees of crystallinity 207
Marguerum District, Colbert County, bauxitic clays 504, 505
Marysvale, Piute County, Utah, uranium mineralization in 116
Maui, Hawaii
X-ray diffraction traces of alumina-silica gel and allophane 166
volcanic rocks of 156-158
McEuen, R. B.: Dielectrophoretic behavior of clay minerals I. Dielectrophoretic separation of clay mixtures 549
Mechanism of the octahedral layer formation 480-487
Mechanism of reaction between calcium hydroxide and silicates 375
Mechanisms of direct bauxitization 135-139
Mechanisms, ionic exchange 466, 467
Mechanisms and kinetics of dehydration and recrystallization of serpentine 35, 49
Meigs Mine 1, 2
Membrane response, effect of pressure and ion species on 405-412
Messina, Mario L.: Expansion of fractionated montmorillonites under various relative humidities 617
Methacrylonitrile, use in synthesis of polymer-clay compounds 605
Meyer, Charles: Clay alteration in copper deposits associated with granodiorites 109
Mica quartz schist in the Alabama Piedmont, clay mineralogy and weathering of a Red-Yellow Podzolic soil from 509
Mica reactions with calcium hydroxide 361-378
surface morphology of 425
Micas, layer stagger in 244
Microcrystalline muscovite 61, 62
Middle Kittanning coal, underclay of 596-599
Miller, J. G.: Oxidizing power of the surface of attapulgite clay 381
Mine
Caribou, Boulder County, Colorado 113, 114
Chesebough 5, 6
Lone Eagle, Montana, alteration in 116, 117
Los Ochos, Sagüache County, Colorado, uranium deposits in 115
Meigs 1, 2
Mountain Con, early alteration in 109
Ochlocknee 1-3
Thompson-Temperlly mine 446
Mineral composition of suspended sediment, Cheyenne River basin 664
Mineralogical analysis of Cheyenne River Basin 660-665
Mineralogical properties of clay and fine silt fractions of soils 512-518
of coarse and medium silt and sand 519, 520
Mineralogy,
Cisco clay 439, 442
clay, and weathering of a Red-Yellow Podzolic soil from quartz mica schist in the Alabama Piedmont 509
and geology of the sedimentary kaolins of the Southeastern United States 177
of Hungarian bauxites 140, 141
of kaolin deposits 185
Mississippi Coastal Plain
mineralogical analysis of clays from 532-546
soil properties from 531, 532
Lower, weathering relationships between gibbsite, kaolinite, chlorite and expansible layer silicated in selected soils from 529
Mississippi Valley, upper, zinc-lead district, clay-mineral alteration in 445
Modal analyses of biotite-plagioclase gneiss 455
Montana, Lone Eagle Mine, alteration in 116, 117
Montmorillonite
basal spacing in 627-630
compacted at 5000 psi, exchange constants for 413
compacted at 5000 psi, specificity of 416
fractionated, X-ray diffraction studies of 623-626
genesis of kaolinite from, by weathering: structural and morphological evidence of transformation 197
high temperature phases from, Cheto (Ariz.) 239
H resin treated, sodium hydroxide titration of 285-287
infrared spectra in the 3µ region for 342, 343
reactions with calcium hydroxide 361-378
spacings vs. pressure of NH₃ in mm Hg for 341
treatment for X-ray thermal studies 70
X-ray identification of 586
Montmorillonites
amines adsorption by 345
Montmorillonites, cont.
Cheto-type and Wyoming-type, D.T.A. curves of 77
fractionated, expansion of, under various relative humidities 617
heat of adsorption in 348
organic, structure of, and their adsorptive properties in the gas phase 257
Morphological and structural evidence of transformation, genesis of kaolinite from montmorillonite by weathering 197
Morphology, vermiculite surface 423
Mountain Con Mine, early alteration in 109
Mullite
effects of impurities additives on the formation of, from kaolinite 75
high temperature phase from illite 235-237, 240, 241
Mullite-pyrophyllite, topotactic relationships in 22-24
Muscovite
flocculated, and air bubbles, spatial relations between 224
dehydroxylation of 58-61
topotactic transformation in 12-17

Nakahira, M.: Electrical resistance measurements of kaolinite and serpentine powders during dehydroxylation 29
Nakahira, M. (with T. Kato): Thermal transformations of pyrophyllite and talc as revealed by X-ray and electron diffraction studies 21
Netherlands and Belgium, recent researches on clay minerals in 465
Nicoll, Alastair W.: Topotactic transformation of muscovite under mild hydrothermal conditions 11
Non-marine lithotypes in Cisco clay mineralogy 437-438
Norway, quick clays 87-92
Nucleation 56-58

Occurrence of a tabular halloysite in a Texas soil, by G. W. Kunze and W. F. Bradley 523
Ocheskey pit, diffraction pattern of chlorite from 143
Ochlocknee Mine 1-3
Octahedral coordination of aluminum, causes of 333

INDEX

Octahedral hydroxides obtained by syntheses, description of 472-480
The octahedral layer, by M.C. Gastuche 471
Octahedral layer formation, mechanism of 480-487
Ohio, Pennsylvanian coal underclays 581-600
Okuda, Susumu (with W. O. Williamson): The spatial relations between air bubbles and flocculated kaolinite and dickite 223
Opal, solubility of, in boiling sodium hydroxide solution as a function of time 636-645
Ore-bearing strata associated with argillic alteration 121
Organic colloid, effect on rate of filtration 213
Organic montmorillonites, structure of, and their adsorptive properties in the gas phase 257
Organic processes, concentration of alumina by 145, 146
Organo-clay derivative, preparation of 262, 263
Origin of high-alumina minerals, common denominator(s) in 146, 147
The origin of high-alumina minerals—a review, by W. D. Keller 129
Ormsby, W. C. (with J. H. Marcus): Rheological properties of kaolins of varying degrees of crystallinity 207
Osterman, Justus: Studies on properties and formation of quick clays 87
Outgassing temperature, water molecules relative to surface hydroxyls with respect to 335-340
Oxide impurities from kaolins, NaOH dissolution of 633
Oxide ions, loss of, in clays 9
Oxide minerals, solution rates 639-642
Oxidizing power of the surface of attapulgite clay, by J. G. Miller, W. Linwood Haden, Jr. and T. Dixon Dulton 381
Oxygen packing in acceptor regions 9

Paleozoic K-bentonites
clay mineralogy of 563
of the eastern United States, clay mineralogy of 557
Parent materials of high-alumina minerals 131
Parham, Walter E.: Lateral clay mineral variations in certain Pennsylvanian underclays 581
Particle size distribution
in soils 512
in suspended sediment of streams 658, 659
Particle size
in montmorillonite 620, 621
and zeta potential, relation between 270, 271
Pastes, filter pressed kaolinite-water, characteristics of 209
Patterson, S. H.: Halloysitic underclay and amorphous inorganic matter in Hawaii 153
Pennsylvanian cyclotherm 584
Pennsylvanian underclays, lateral clay mineral variations in 581
Petrogenesis of bentonites, by Maynard Slaughter 173
Petrology of the Dry Branch, Georgia, kaolin deposits, by Edward C. Jonas 199
Petrology, thin section, of kaolin deposits 201
pH in clays, effects of additives on 212
pH dependent cation exchange charge, inorganic, of soils 281
pH
ionic content and coordination of octahedral layer formation 486, 487
selective effect of cations and anions upon rate of filtration and on 214-218
Phase relations in the system Al₂O₃-H₂O 132, 133.
Phases, high temperature, developed in some illitic clays, qualitative analysis of 233
Photomicrograph
kaolinite, before 205
muscovite, facing 204
sand, facing 204
vermicular kaolinite, after 204
Phyllosilicates
3-layer, stabilities of, related to their ionic-covalent bonding 249
3-layer, temperatures of destruction for 251
Physical evolution of pure ferric and aluminic samples 480-483
Physical properties of quartz at and near transition, by R. A. Young 83
Physico-chemical changes in quick clays 103-106
Pierre Shale, composition of weathered profile 661
Plagioclase-biotite gneiss, chemical weathering of, Dekalb County, Georgia 455
Platteville Formation, stratigraphic column 447
Podzolic Red- Yellow soil from quartz mica schist in the Alabama Piedmont, clay mineralogy and weathering of 509
Polymer chain, configuration of 612-615
Polymer-clay compounds, preparation and properties of 603
Polymer-clays, X-ray diffraction studies of 610-612
Polymethacrylonitrile-montmorillonite 610
Polystyrene-kaolinite, preparation of polymer-clays 606
Polystyrene-montmorillonite by ion-exchange reaction 610
preparation of polymer-clays 606-610
Porosity of the filter cake versus rate of filtration at 25 psi 219
Potassium-bentonite, X-ray diffractometer traces of 561, 562
Potassium-bentonites clay minerals of 560-563
Paleozoic, of the eastern U.S., clay mineralogy of 557, 563
Potential developed for a mixed electrolyte solution 417, 418
Potentiometric, electrical conductance and self-diffusion measurements in clay-water systems, by R. G. Gast and Peggy J. East 297
Potentiometric measurements 299
Precipitation of Al³⁺; and alumina 145
Precipitation, secondary and primary (?) effects on clays by, in a low-pH range 138, 139
Preparation and properties of some polymer-clay compounds, by H. G. G. Dekking 603
Pressure, on membrane response, effect of 405-406
Process of high-alumina agrillation 131
Properties and preparation of some polymer-clay compounds 603
Pyrophyllite 62-66
activation energy 62
electron diffraction pattern of 28a
reactions with calcium hydroxide 361-378
and talc, thermal transformations of, as revealed by X-ray and electron diffraction studies 21
Pyrophyllite-mullite, topotactic relationships in 22-24

A qualitative analysis of the high temperature phases developed in some illitic clays, by Bruce Bohor 233

Quartz mica schist in the Alabama Piedmont, clay mineralogy and weathering of a Red-Yellow Podzolic soil from 509

Quartz physical properties of, at and near the transition 83
reactions with calcium hydroxide 361-378
solubility of, in boiling sodium hydroxide solution as function of time 636-645
in underclays 162, 163

Quick clay, effects of industrial impurities on 104
Quick clays alkaline treatment of 105
cementation in 95
compaction in 95
effects of dispersing agents on 104
and landslides 87
leaching theory of 102-106
Norway 87-92
physico-chemical changes in 103-106
studies on properties and formation of 87
Sweden 87-92
undrained, shear strength in 95

Rate controlling of growth of phases, nucleation 56-58
Rate of dehydration and recrystallization of serpentine 44
Reaction products examination of 364
nature of 376
Reaction rates, dissolution from clays 638
Reactions high-temperature D.T.A. and X-ray diffraction studies of 69
high temperature of kaolinite, thermodynamics of 247

Recent researchers on clay minerals in Belgium and the Netherlands, by J. J. Fripiat 465

Reconstruction, secondary and primary (?) effects on clays by, in a low-pH range 138, 139

Recrystallization and dehydration of kaolinite 45
and dehydration of serpentine, rate of 44
and kinetics and mechanisms of dehydration of serpentine 35, 49
spectrum of activation energies for 49
Residual water and physically adsorbed water 334-340
Resistance measurements, electrical, of kaolinite and serpentine powders during dehydroxylation 29

Rheological properties of kaolins of varying degrees of crystallinity, by W. C. Ormsby and J. H. Marcus 207

Ritchie, F. T. (with B. F. Bue and L. Ray Gremillion): Field trip to attapulgite fuller's earth localities in Georgia and Florida, October 4, 1963 1

Rolf, B. N. (with R. F. Hadley): Weathering and transport of sediment in the Cheyenne River Basin, Eastern Wyoming 649

Roy, Ruxton (with P. J. Denny): Cation between mixtures of clay minerals and minerals and between a zeolite and a clay mineral 567

Sampling procedure for underclays 583
Sand and silt, coarse and medium, mineralogical properties of 519, 520

Saprolite minerals in 155
relation between abrasion pH and weight per cent kaolin in 458
and underclays, chemical analysis of 156
variation in chemical composition in depth 158, 159

Schist, mica quartz, in the Alabama Piedmont, clay mineralogy and weathering of a Red-Yellow Podzolic soil from 509

Sediment, weathering and transport of, in the Cheyenne River Basin, Eastern Wyoming 649
Selective effect of cations and anions upon rate of filtration and on pH 214-218

Selectivity of clays in dispersed state 418, 419
from electrochemical measurements 399-402
of compacted clays 412-417
by titration 413-417
Self-diffusion, potentiometric, and electrical conductance measurements in clay-water systems 297
Sericitization, alteration type in Colorado mines 113-115
Serpentine 10
dehydrated, forsterite from 33-47
dehydroxylated, estimated activation energy spectrum for the recrystallization of 53
dehydroxylation of 30-33
forsterite temperature of formation from 50
and kaolinite powders during dehydroxylation, electrical resistance measurements of 29
kinetics and mechanisms of dehydration and recrystallization of 35, 49
rate of dehydration and recrystallization of 44
temperatures of dehydration and recrystallization of 49
Shear strength in undrained quick clays 95
SHOVER, EDWARD F.: Clay mineral-environmental relationships in Cisco (U. Penn.) clays and shales, North Central Texas 431
Silica gels, thermal stability of surface hydroxyls on 330
Silicates
alumino, surface properties of 327
expandable layer, and gibbsite, kaolinite, chlorite, weathering relationships between, in selected soils from the Lower Mississippi Coastal Plain 529
hydrous, kinetics of the thermal dehydration of 55
Silicification
alteration type in Colorado mines 113-115
around uranium deposits 124-126
Silicon dioxide, solubility of, in water 135
Silt and sand, coarse and medium, mineralogical properties of 519, 520
Size distribution, cumulative, of different bentonites 315
SLAUGHTER, MAYNARD: Petrogenesis of bentonites 173
Sodium amide, use in synthesis of polymer-clay compounds 605
Sodium-bentonite 278-278
Sodium-bentonite-Ca(OH)₂ mixtures, viscosity of 270
Sodium chloride and calcium chloride, effects of, on zeta potential 271-276
Sodium hydroxide titration of H resin treated montmorillonite 285-289
Sodium saturation and cation exchange capacities of bentonites 314
Sodium sulfate, effect on rate of filtration 213
Sodium hydroxide dissolution of some oxide impurities from kaolins, by R. B. Langston and E. A. Jenne 633
Soil development, weathering trends associated with 546, 547
Soil properties from Mississippi Coastal Plain 531, 532
Soil, Texas, occurrence of a tabular halloysite in 523
Soils
chemical properties of 512
and geology of the Cheyenne River basin 652, 653
particle size distribution in 512
selected, from the Lower Mississippi Coastal Plain, weathering relationships between gibbsite, kaolinite, chlorite and expandable layer silicates in 529
untreated, titration of 287-293
Solid state of clay minerals 465, 466
SOLIMAN, M. R.: Thermodynamics of the various high temperature reactions of kaolinite 247
Solubility of Al₂O₃ and amorphous SiO₂ in water 135
Solution rates, oxide minerals 639-642
Sorption of Al³⁺ and alumina 145
South Carolina and Georgia, evidence of volcanic origin of the Cretaceous sedimentary kaolin of 195
Spacings vs. pressure of NH₃ in mm Hg for montmorillonite 341
The spatial relations between air bubbles and flocculated kaolinite and dickite, by Susumu Okuda and W. O. Williamson 223
Spatial relations for homologous alkyl ammonium bentonites 613
Spearfish Formation, composition of weathered profile 661
Specific conductance in bentonite-water systems 307-308
Specificity of illite compacted at 5000 psi 415
of montmorillonite compacted at 5000 psi 416
Spectrum of activation energies for recrystallization	49
Activation energy, estimated for the recrystallization of dehydroxylated serpentine	53
Spinel high temperature phase from illite	235-239
and muscovite, cell spacings in	16
Stabilities of 3-layer phyllosilicates related to their ionic-covalent bonding, by J. W. TLAPEK and W. D. KELLER	249
Stratiform deposits, alteration in host rock	117
Stratigraphic column	
Decorah Formation	447
Platteville Formation	447
Streams, particle size distribution in suspended sediment of	658, 659
Stresses distribution in natural clays	93
Structural and morphological evidence of transformation, genesis of kaolinite from montmorillonite by weathering	197
Structure of attapulgite	391
The structure of organic montmorillonites and their adsorptive properties in the gas phase, by D. WHITE	257
Structures, geologic, argillic alteration associated with	117-121
Studies on properties and formation of quick clays, by JUSTUS OSTERMAN	87
Styrene monomer, use in synthesis of polymer-clay compounds	605
Surface area and clay particle number	316
on clays developed by pores for Xerogel, Aerosil, cracking catalyst	329
determination, use in study of reactions	363-374
specific, hydroxyl contents, cation exchange capacity	329
Surface areas computed from glycerol retention	315
Surface of attapulgite clay, oxidizing power of	381
Surface chemistry of clay minerals and related materials	466
Surface morphology, vermiculite	423
Surface properties of alumino-silicates, by J. J. FRIPiat	327
Surface topography of clays	327-331
Sweden, quick clays	87-92

Synthesis
- Description of different octahedral hydroxides obtained by 472-480
- Genesis and alteration of clay minerals 466
- System Al₂O₃-H₂O, phase relations in 132, 133
- System calcium-potassium-bentonite, equilibrium in 573-575
- System gibbsite-silica-water, free-energy calculations in 138

Systems
- Clay-water, potentiometric, electrical conductance and self-diffusion measurements in 297
- Mixed aluminum-iron 475-479
- Mixed aluminum-magnesium 479-480

Talc	electron diffraction pattern of 28b
and pyrophyllite, thermal transformations of, as revealed by X-ray and electron diffraction studies	21
reactions with calcium hydroxide	361-378
Talc-ensatite, topotactic relationships in	22-24
TAYLOR, H. F. W.: Crystallographic aspects of high temperature transformations of clay minerals	9
Techniques for clay studies	200
Temperature dependence of specific conductances	303
Temperature diffusion mechanisms with respect to	331
outgassing, water molecules relative to surface hydroxyls with respect to	335-340
versus conductivity σ of kaolinite plugs	352
Temperatures of dehydration and recrystallization of serpentine	49
of destruction for 3-layer phyllosilicates	251
Texas, North Central, clay mineral-environmental relationships in Cisco (U. Penn.) clays and shales	431
Texas soil, occurrence of a tabular halloysite in	523
Thermal decomposition of solids, theory	56
Thermal dehydration, kinetics of, of hydrous silicates	55
Thermal stability and composition, relationship between surface hydroxyls on silica gels, Xerogel, Aerosil, alumino-silicate, kaolinite, cracking catalysts 330
Thermal studies by high temperature D.T.A. and X-ray 69
Thermal transformations of pyrophyllite and talc as revealed by X-ray and electron diffraction studies, by M. Nakahira and T. Kato 21
Thermodynamic properties of water in clay suspensions at the upper plastic limit 319
Thermodynamics of the various high temperature reactions of kaolinite, by M. R. Soliman 247
Thermograms of biotite-plagioclase gneiss saprolite 461
Thin section petrology of kaolin deposits 201
Thompson-Temperly mine alteration studies in 449-453
X-ray diffraction traces of samples from 450, 451
Titration selectivity by 413-417
sodium hydroxide, of H resin treated montmorillonite 285-287
of untreated soils 287-293
Tobermorite, phases of 360
Topotactic relationships in enstatite-talc 22-24
in mullite-pyrophyllite 22-24
Topotactic transformation of muscovite under mild hydrothermal conditions, by Alastair W. Nicol 11
Transformation structural and morphological evidence of, genesis of kaolinite from montmorillonite by weathering 197
topotactic, of muscovite under mild hydrothermal conditions 11
Transformations of clay minerals by Ca(OH)₂ attack, by Sidney Diamond, Joe L. White and William L. Dolch 359
Transformations high temperature, of clay minerals, crystallographic aspects of 9 thermal, of pyrophyllite and talc as revealed by X-ray and electron diffraction studies 21
Transport and weathering of sediment in the Cheyenne River Basin, Eastern Wyoming 649
Transportation of clay deposits 189-191
Tuscaloosa group in Alabama, clay deposits of the 495
Tuscaloosa sands, clays in 504
Tuscaloosa sediments, source of 188-191

Underclays
amorphous materials, origin of 168-172
of Colchester coal 593-595
deposits 160-163
description of 582, 583
effect of coal forming processes on 591
halloysitic, and amorphous inorganic matter in Hawaii 153
of the Herrin coal 595, 596
of the Middle Kittanning coal 596-599
minerals in 155

Underclays
Illinois Pennsylvanian coal 581-600
lateral clay mineral variation in 591, 592
Ohio Pennsylvanian coal 581-600
Pennsylvanian, lateral clay mineral variation in 581
sampling procedure for 583
and shallow saprolite, chemical analysis of 156
X-ray diffraction of, Kauai, Hawaii 161
United States, eastern, clay mineralogy of Paleozoic K-bentonites of 557
Uranium deposits associated with vanadium-bearing clays 121, 122
carbonatization around 123, 124
hydrothermal alteration in Marysvale, Utah 116
in Los Ochos Mine, Colorado 115
silicification around 124-126
Uranium emplacement and argillic alteration on the Colorado Plateau 111
Uranium mineralization, Marysvale, Utah 116
Utah, Marysvale, Piute County, uranium mineralization in 116
INDEX 691

Vanadium-bearing clays associated with
uranium deposits 121, 122
Variability within clay deposits 184
Vein-type deposits, wall rock alteration
in 113-117
VENKATARAMAN, K. V. (with M. L.
JACKSON): Vermiculite surface mor-
phology 423
Vermiculite-like morphology by treatment
of biotite 427, 428
Vermiculite surface morphology, by K. V.
VENKATARAMAN and M. L. JACKSON
423
Vermiculite, X-ray identification of 585
Vermiculites, surface morphology of 425,
426
Viscosity effects of calcium hydroxide on
273-276
Volcanic ash
solubility of, in boiling sodium hydroxide
solution as a function of time 636-645
source of bentonite, 557, 558
Volcanic origin, evidence of, of the Cre-
taceous sedimentary kaolin of South
Carolina and Georgia 195
Volcanic rocks of Kauai and Maui 156-158
VOLK, V. V. (with M. L. JACKSON):
Inorganic pH dependent cation ex-
change charge of soils 281
WADSWORTH, M. E. (with J. B. HOLT and
I. B. CUTLER): Kinetics of the thermal
derhydration of hydrous silicates 55
WAHL, F. M. (with R. E. GRIM): High
temperature D.T.A. and X-ray diffrac-
tion studies of reactions 69
Wall rock alteration in vein-type deposits
113-117
Water activity measurements on the sus-
pensions of clays 484-486
Water in clay systems, effect of gelation
on the properties of 311
Water deformation band compared to
ammonia deformation band in mont-
morillonite 344
Water molecules
entropy loss of, adsorbed at 28°C on
glass surfaces 340
relative to surface hydroxyls with re-
spect to outgassing temperature
338-340
Water, physical adsorption of, on kaolinite
surface 339
Water tension variation with temperature
in suspensions of different bentonites
318-325
Weathered basalts 157
Weathered rocks, bulk specific gravity of
457-458
Weathering
chemical, of biotite plagioclase gneiss,
Dekalb County 455
and clay mineralogy of a Red-Yellow
Podzolic soil from quartz mica
schist in the Alabama Piedmont
509
derivation of high Al minerals from
clay minerals by 139-145
derivation from non-clay silicate
minerals by 133-135
genesis of kaolinite from montmorillon-
ite by; structural and morphological
evidence of transformation 197
present-day, and ground water action
590
trends associated with soil development
546, 547
Weathering relationships between gibbsite,
kaolinite, chlorite and expansible layer
silicates in selected soils from the
Lower Mississippi Coastal Plain, by
ROLLIN C. GLENN 529
Weathering and transport of sediment in
the Cheyenne River Basin, Eastern
Wyoming, by B. N. ROLFE and R. F.
HADLEY 649
WEST, RICHARD: The characteristics of
filter pressed kaolinite-water pastes 209
WHITE, D.: The structure of organic
montmorillonites and their adsorptive
properties in the gas phase 257
WHITE, JOE L. (with SIDNEY DIAMOND
and WILLIAM L. DOLCH): Trans-
formations of clay minerals by Ca(OH)2
attack 359
WILLIAMSON, W. O. (with SUSUMU OKUDA):
The spatial relations between air
bubbles and flocculated kaolinite and
dickite 223
Wyoming, Eastern, weathering and trans-
port of sediment in the Cheyenne
River Basin 649
X-ray diffraction
analysis of clays from Mississippi Coastal
Plain 532-535
and high-temperature D.T.A. studies of
reactions 69
X-ray diffraction, cont.
of Na-Bentonite-Ca(OH)$_2$ suspensions 270
of underclays, Kauai, Hawaii 161
use in study of reactions 363-374
patterns of clay minerals from fault zones along the Cane Creek-Lisbon Valley alignment 119
photographs of muscovite, results 14-16
studies of fractionated montmorillonite 623-626
studies, humidity control from 622, 623
studies of kaolin deposits 202
studies of polymer-clays 610-612
traces of alumina-silica gel and allophane, Maui, Hawaii 166
traces of samples from Thompson-Temperly mine 450, 451
X-ray diffractometer traces of K-bentonite 561, 562
X-ray and electron diffraction studies, thermal transformations of pyrophyllite and talc as revealed by 21
X-ray and high temperature D.T.A., thermal studies by 69
X-ray identification of clay minerals 585-587

INDEX

Xerogel
 Aerosil, cracking catalyst, surface area on clays developed by pores' for 329
 thermal stability of surface hydroxyls on 330

YOUNG, R. A.: Physical properties of quartz at and near the transition 83

Zeolite and a clay mineral, cation exchange between 567
Zeta potential
 of clay particles 269, 270
 effect of bentonite concentration on, in dilute NaCl solution 271-276
 effect of clay concentration in 271-276
 effects of calcium hydroxide on 271-276
 effects of sodium chloride and calcium chloride on 271-276
 and particle size, relation between 270, 271
Zinc-lead district, upper Mississippi Valley, clay-mineral alteration in 445